翻訳と辞書
Words near each other
・ Sağırin, Manavgat
・ Sağırkaraca
・ Sağırlar, Ceyhan
・ Sazlı, Söke
・ Sazlıca
・ Sazlıca, Merzifon
・ Sazlıdere Dam
・ Sazlısu, Çıldır
・ Sazlıçayır, Hanak
・ SAZMANAB
・ Sazmani Khabat
・ Sazmartinshorn
・ Saznaq
・ Sazomín
・ Sazonov
Sazonov's theorem
・ Sazonovo
・ Sazonovo, Chagodoshchensky District, Vologda Oblast
・ Sazoo
・ Sazos
・ Sazoué
・ Sazovice
・ Sazzy Falak
・ Sazō Idemitsu
・ Saâcy-sur-Marne
・ Saâd Sahraoui
・ Saâdane Afif
・ Saâdeddine Zmerli
・ Saâne
・ Saâne-Saint-Just


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Sazonov's theorem : ウィキペディア英語版
Sazonov's theorem
In mathematics, Sazonov's theorem, named after Vyacheslav Vasilievich Sazonov (), is a theorem in functional analysis.
It states that a bounded linear operator between two Hilbert spaces is ''γ''-radonifying if it is Hilbert–Schmidt. The result is also important in the study of stochastic processes and the Malliavin calculus, since results concerning probability measures on infinite-dimensional spaces are of central importance in these fields. Sazonov's theorem also has a converse: if the map is not Hilbert–Schmidt, then it is not γ-radonifying.
==Statement of the theorem==

Let ''G'' and ''H'' be two Hilbert spaces and let ''T'' : ''G'' → ''H'' be a bounded operator from ''G'' to ''H''. Recall that ''T'' is said to be ''γ''-radonifying if the push forward of the canonical Gaussian cylinder set measure on ''G'' is a ''bona fide'' measure on ''H''. Recall also that ''T'' is said to be Hilbert–Schmidt if there is an orthonormal basis of ''G'' such that
:\sum_ \| T(e_) \|_^ < + \infty.
Then Sazonov's theorem is that ''T'' is ''γ''-radonifying if it is Hilbert–Schmidt.
The proof uses Prokhorov's theorem.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Sazonov's theorem」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.